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ABSTRACT

The literature on ensemble-based data assimilation techniques has been growing rapidly in past

decade. These techniques are being explored as possible alternatives to current operational anal-

ysis techniques such as 3- or 4-dimensional variational assimilation. Ensemble-based assimila-

tion techniques utilize an ensemble of parallel data assimilation and forecast cycles. The background-

error covariances are estimated using the forecast ensemble and are used to produce an ensemble

of analyses. The background-error covariances are flow dependent and often have very com-

plicated structure, providing a very different adjustment to the observations than are seen from

methods such as 3- dimensional variational assimilation. Though computationally expensive,

ensemble-based techniques are relatively easy to code, since no adjoint nor tangent-linear mod-

els are required, and tests in simple models suggest that dramatic improvements over existing

operational methods may be possible.

A review of the ensemble-based assimilation is provided here, starting from the basic concepts

of Bayesian assimilation. Without some approximation, Bayesian assimilation is computation-

ally impossible for large-dimensional systems. Assuming normality of error statistics and linear-

ity of error growth, the state and its error covariance may be predicted optimally using Kalman

filter techniques. Explanations of ensemble assimilation methods are then provided. If linearity

and normality assumptions are valid, as ensemble size increases, the mean and covariance es-

timates from ensemble assimilation methods will converge to those produced by the extended

Kalman filter. However, for high-dimensional states, ensemble assimilation methods are compu-

tationally less expensive than Kalman filters and may outperform them when linear and normal

assumptions are inappropriate. The accuracy of both methods depend on reasonable models of

error statistics.

Techniques for making the ensemble assimilation methods more accurate and more computa-
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tionally efficient on parallel computers are discussed, and an example of ensemble data assimi-

lation of a sparse network of real surface pressure observations into a global numerical weather

prediction model is provided.
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1. INTRODUCTION

The purpose of this article is to introduce the reader to promising new experimental meth-

ods for atmospheric data assimilation involving the use of ensemble forecasts (e.g., Evensen

1994, Evensen and van Leeuwen 1996, Houtekamer and Mitchell 1998, 1999, 2001, Burgers et

al. 1998, van Leeuwen 1999, Lermusiaux and Robinson 1999, Anderson and Anderson 1999,

Miller et al. 1999, Hamill and Snyder 2000, 2002, Keppenne 2000, Mitchell and Houtekamer

2000, Heemink et al. 2001, Hamill et al. 2001, 2003, Anderson 2001, Pham 2001, Verlaan and

Heemink 2001, Bishop et al. 2001, Keppenne and Rienecker 2002, Whitaker and Hamill 2002,

Mitchell et al. 2002, Hansen 2002, Lermusiaux 2002, Reichle et al. 2002ab, Reichle and Koster

2003, Snyder and Zhang 2003, Tippett et al. 2003, Anderson 2003, Zhang et al. 2003, Evensen

2003, Lawson and Hansen 2003, Ott et al. 2003). There is a natural linkage between data as-

similation and ensemble forecasting. Ensemble forecasts (Toth and Kalnay 1993, 1997, Molteni

et al. 1996, Houtekamer et al. 1996a) are designed to estimate the flow-dependent uncertainty

of the forecast; data assimilation techniques require accurate estimates of forecast uncertainty in

order to optimally blend the prior forecast(s) with new observations. Ensemble-based assimila-

tion methods integrate the two steps; the ensemble of forecasts is used to estimate forecast-error

statistics during the data assimilation step, and the output of the assimilation is a set of analyses.

This process is cycled, the short-term ensemble forecasts from the set of analyses providing the

error statistics again for the next assimilation cycle.

Four-dimensional variational analysis (4D-Var; Le Dimet and Talagrand 1986, Courtier et

al. 1994, Rabier et al. 1998, 2000) is now considered the state-of-the-art technique for atmo-

spheric data assimilation. 4D-Var finds the model trajectory that best fits the observational data

over a period of time. It is thus worth questioning why it may be worthwhile to consider such

a different technique. Will ensemble-based assimilation methods produce more accurate anal-

yses? This cannot be answered definitively yet. Direct comparisons of ensemble assimilation

methods and 4D-Var in realistic scenarios have yet to be performed. Right now 4D-Var is rela-

tively well established, while ensemble-based methods have demonstrated dramatically reduced
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errors in controlled tests with simple models. Testing of ensemble-based methods in more com-

plex models with real data has only been started within the last few years with suggestive but

inconclusive results.

Ensemble-based methods have some potential advantages that make them worthy of fur-

ther consideration. Ensemble-based methods are much easier to code and maintain, for neither

a tangent linear nor an adjoint model of the forecast model is required, as they are with 4D-Var.

Ensemble-based methods produce an ensemble of possible analysis states, providing informa-

tion on both the mean analysis and its uncertainty. In comparison, 4D-Var estimates only the

mean. This has two useful consequences for ensemble-based methods. First, an ensemble of

initial conditions is available for subsequent ensemble forecasts; no additional computations

are required to create perturbed initial conditions, as are required with 4D-Var. Second, if the

analysis uncertainty is very spatially inhomogeneous and time dependent, in ensemble-based

methods this information will be fed through from one assimilation cycle to the next. In com-

parison, in 4D-Var, the assimilation typically starts at each update cycle with the same stationary

model of error statistics. Hence, the influence of observations may be more properly weighted in

ensemble-based methods than in 4D-Var.

Another potential strength of ensemble-based methods is their ability to incorporate the ef-

fects of forecast uncertainty that are due to model imperfections directly into the data assimila-

tion. In comparison, in current operational implementations of 4D-Var, the forecast model dy-

namics are a strong constraint (Courtier et al. 1994; but see Bennett et al. 1996 for a possible

alternative). If the forecast model used in 4D-Var does not adequately represent the true dynam-

ics of the atmosphere, model error may be large, and 4D-Var may fit a model trajectory that was

significantly different than the trajectory of the real atmosphere during that time window.

Ensemble-based techniques may have disadvantages relative to 4D-Var, some that will only

be discovered through experimentation. Ensemble-based techniques are likely to be at least as

computationally expensive as 4D-Var, and early tests showed that without careful adjustment,

the method is not robust and will underestimate forecast errors and insufficiently draw to new
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observational data. Further, 4D-Var is more naturally suited to assimilating observations that

are uniformly distributed in time such as satellite observations, and it may handle observations

with nonlinear observation operators such as satellite radiances better than ensemble techniques

(Lorenc 2003). Ensemble approaches may be difficult to apply in limited-area models because

of the lateral boundary conditions, and balance issues may be problematic (ibid). In the end, it

will require significant further research to determine whether ensemble assimilation methods can

outperform 4D-Var. Given the advantages cited above, however, there is reason for optimism

and further testing. This review will provide a reference for ensemble-based assimilation and

hopefully will stimulate wider interest in the technique.

Rather than starting with the specifics of recently proposed ensemble-based assimilation

techniques, in this paper we will take a step back and try to motivate their use by quickly devel-

oping them from first principles, noting the approximations that have been made along the way.

This will take us from Bayesian data assimilation (section 2), which is conceptually simple but

computationally prohibitive, to the Kalman filter (section 3), a simplification assuming normality

and linearity of error growth, to ensemble assimilation methods (section 4), which may be more

computationally tractable and robust. We will then discuss some of the algorithmic techniques

(sections 5-6) and demonstrate an ensemble-based assimilation method using a sparse network

of surface pressure observations and a global numerical weather prediction model (section 7).

Another contemporaneous review paper on ensemble-based data assimilation is available

(Evensen 2003). This paper provides less background material on Bayesian assimilation and the

roots of the Kalman filter, but it provides a wider review of the currently discussed ensemble-

based assimilation approaches, a more theoretical examination of the treatment of model errors,

and a wide array of references to ensemble-based assimilation in the oceanographic literature.

Lorenc (2003) also reviews ensemble methods, and in particular provides some thoughts on the

potential relative strengths and weaknesses compared to 4D-Var.

6



In subsequent discussion, the atmosphere state, which is of course a continuum, is assumed

to be adequately described in discretized fashion, perhaps by the values of winds, temperature,

humidity, and pressure at a set of grid points.

2. BAYESIAN DATA ASSIMILATION

Conceptually, the atmospheric data assimilation problem is a relatively simple one. The

task at hand is to accurately estimate the probability density function (pdf) for the current atmo-

spheric state given all current and past observations. Much of the material in this section fol-

lows the work of Jazwinski (1970). If the reader is interested in further material on the subject,

Lorenc (1986) provides a formulation of data assimilation in a Bayesian context, and Talagrand

(1997) and Daley (1997) provide excellent reviews of atmospheric data assimilation and in par-

ticular the Kalman filter discussed in Section 3. Cohn (1997) provides a more rigorous statistical

formulation of the problem.

When considering Bayesian assimilation, there are two general steps to the assimilation.

Assume that a pdf of the state of the atmosphere is available (in the lack of any knowledge, this

may be the climatological pdf). The first step is to assimilate recent observations, thereby sharp-

ening the pdf. The second step is to propagate the pdf forward in time until new observations

are available. If the pdf is initially sharp (i.e., the distribution is relatively narrow), then chaotic

dynamics and model uncertainty will usually broaden the probability distribution. These two

steps are then repeated. We will describe each of these steps separately, starting with the assimi-

lation of new observations.

a. Bayesian updating

Assume that an estimate of the pdf has been propagated forward to a time when observa-

tions are available, then the state can be estimated more specifically by incorporating informa-

tion from the new observations. This will be termed the “update.”

The following notational convention is used. Boldface characters will denote vectors or ma-

trices, while use of the italicized font denotes a scalar. xt
t−1 will denote the n-dimensional true

7



model state at time t − 1: xt
t−1 = [xt

t−1(1), . . . , x
t
t−1(n)]. Also, assume a collection of observa-

tions ψt. This vector includes observations yt at the most recent time as well as observations at

all previous times ψt = [yt, ψt−1], where ψt−1 = [yt−1, . . . , y0]. There are Mt observations at

time t, i.e., yt = [yt(1), . . . , yt(Mt)]. Let P (xt
t) be a multivariate probability density function, de-

fined such that Pr(a ≤ xt
t ≤ b) =

∫ b
a P (xt

t) dxt
t, and probability density integrates to 1.0 over the

entire phase space.

Formally, the update problem is to accurately estimate P (xt
t | ψt), the probability density

estimate of the current atmospheric state given the current and past observations. Bayes’ Rule

tells us that this quantity can be re-expressed as

P (xt
t | ψt) ∝ P (ψt | xt

t) P (xt
t). (1)

Bayes’ Rule is usually expressed with a normalization constant in the denominator on the right-

hand side of (1); for simplicity, the term in the denominator will be dropped here, and it is as-

sumed that when coded, the developer will ensure that probability density integrates to 1.0.

One hopefully minor assumption is made: observation errors are independent from one time

to the next. Hence, P (ψt | xt
t) = P (yt | xt

t) P (ψt−1 | xt
t). This may not be true for observations

from satellites, where instrumentation biases may be difficult to remove. Also, errors of obser-

vation representativeness (Daley 1991, 1993) may be flow dependent and correlated in time. But

under this assumption, (1) is equivalent to

P (xt
t | ψt) ∝ P (yt | xt

t) P (ψt−1 | xt
t) P (xt

t). (2)

By Bayes’ Rule again, P (ψt−1 | xt
t) P (xt

t) ∝ P (xt
t | ψt−1). Hence, (2) simplifies to

P (xt
t | ψt) ∝ P (yt | xt

t) P (xt
t | ψt−1). (3)

In principle, equation (3) is elegantly simple. It expresses a recursive relationship: the “poste-

rior,” the pdf for the current model state given all the observations, is a product of the the proba-

bility distribution for the current observations P (yt | xt
t) and the “prior,” P (xt

t | ψt−1), also known
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as the “background.” The prior is the pdf of the model state at time t given all the past observa-

tions up to time t− 1. Typically, the prior will have been estimated in some fashion from a cycle

of previous data assimilations and short-term forecasts up to the current time; approximations of

how this may be computed will be discussed in section 2b.

The expression P (yt | xt
t) may be confusing: the observations are known, so why should

this be expressed probabilistically? Consider for a moment that yt is a random variable con-

sisting of the converted known true state plus unknown random error: yt = H(xt
t) + ε, where

H(·) is a “forward” observation operator that converts the model state to the observation type

and location. Let
〈
·
〉

denote the expected value. If ε is normally distributed with
〈
ε
〉

= 0.0 and〈
εεT
〉

= R, then

P (yt | xt
t) ∼ exp

[
−1

2

(
H(xt

t) − yt

)T
R−1

(
H(xt

t) − yt

)]
, (4)

that is, P
(

yt | xt
t

)
= P

(
yt | H(xt

t)
)
∼ N

(
H(xt

t),R
)
, the distribution is normal with mean H(xt

t)

and covariance R (Cohn 1997). Of course, the observations are known and the truth is the ran-

dom variable. In such a case, it is useful to think of P
(

yt | H(xt
t)
)

as equivalent to its likelihood

L
(
H(xt

t) | yt

)
, expressing the likelihood that the interpolated truth has the value H(xt

t) given the

set of observations yt (Casella and Berger 1990, p. 265). In (4), the probability density assigned

to a particular H(xt
t) − yt difference is identical regardless of whether H(xt

t) or yt is the random

variable. Hence, the P (yt | xt
t) in (3) can still be described by (4), but for purposes of Bayesian

data assimilation, it is convenient to think of this as P (yt | xt
t) ∼ N (yt,R), a normal distribution

centered on the actual observations.

Let’s now demonstrate the update step of Bayesian assimilation with a simple example.

P (xt
t | ψt−1) is an estimate of the prior for a two-dimensional model state. This was produced by

assimilating all prior observations up to and including time t − 1 and estimating in some man-

ner how that pdf has evolved in the time interval between t − 1 and t. Consider how to update

the pdf given a new scalar observation y, which in this example is observing the same quantity

as the first component of the state vector measures. The pdf for the observation P (yt | xt
t) is as-
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sumed to be distributed normally about the actual observation, ∼ N (yt, σ
2). Here, let yt = 58

and σ2 = 100.

Selected contours of the prior are plotted in Fig. 1a ; as shown, the prior is bimodal. The

shape of the marginal prior distributions P (xt(1) | ψt−1) and P (xt(2) |ψt−1) are plotted along

each axis in solid lines. The dashed line denotes the observation probability distribution P (yt | xt
t).

This probability varies with the value xt(1), but given xt(1) is the same for any value of xt(2). The

updated posterior distribution is computed using (3) and is shown in Fig. 1b. Note that the as-

similation of the observation enhanced the probability in the lobe overlapping the observation

distribution and decreased it in the other lobe. Overall, the posterior distribution is more sharp

(specific) than the prior, as is expected.

b. Forecasting of probability density

The question of how the pdf estimate is propagated forward in time when new observations

are available is now considered. Let M denote the discrete forward propagator, i.e., the deter-

ministic weather forecast model. Ideally, the forecast model would be perfect, so that if the true

state is known at time t − 1, the future state at time t and all subsequent times can be defined:

xt
t = M(xt

t−1). Unfortunately, weather prediction models have errors, a consequence of the finite

resolution of the model and the resultant lack of interaction with unresolved scales as well as de-

ficiencies in the model formulation. Consequently, a more realistic model of the time evolution

is

xt
t+1 = M(xt

t) + εx(t,t+1) (5)

where εx(t,t+1) represents an (unknown) n-dimensional error of the model state incurred between

time t and t + 1. For ease of subsequent analysis, it is often assumed that the error can be mod-

eled with a stochastic process:

εx(t,t+1) = Gt(xt
t) δt. (6)

Here, Gt(xt
t) is a state-dependent, n × m matrix, where

〈
Gt(xt

t)Gt(xt
t)

T
〉

= Qt and δt is a m-

dimensional process we’d like to approximate as white noise with zero mean (see Penland 2003
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for caveats). Qt is assumed known. In reality, the noise process may neither be white nor have

zero mean, and the structure of Qt may be difficult to estimate. For now, these complications

are ignored. Substituting (6) into (5) produces a stochastic-dynamic model for the evolution of a

model state:

xt
t+1 = M(xt

t) + Gt(xt
t) δt (7)

This equation implies that even if the initial state is known precisely (an impossibility), future

model states cannot since unknown random model errors are continually added.

Conceptually, the evolution of the pdf can be modeled with the Fokker-Planck equation

(e.g., Gardiner 1985):

∂P (xt
t)

∂t
= −∇ ·

[
M(xt

t) P (xt
t)

]
+
∑
i,j

∂2

∂xt
t(i)∂x

t
t(j)

(Qt

2

)
ij
P (xt

t) (8)

If Qt is zero, then only the first term remains, and the Fokker-Planck equation reduces to the Li-

ouville equation (Ehrendorfer 1994ab), a continuity equation for the conservation of probability.

Probability thus diffuses with time according to the chaotic dynamics of the forecast model. The

second term includes the effects of model error, including the increased diffusion of probability

due to model uncertainty as well as noise-induced drift (Sardeshmukh et al. 2001).

c. Limitations of Bayesian data assimilation

Unfortunately, neither the update nor the forecast steps in Bayesian data assimilation are

practical for real-world NWP applications without some simplification. For the update step, one

problem with modeling a complicated pdf in higher dimensions is the “curse of dimensional-

ity” (e.g., Bellman 1961, Hastie et al. 2001). Were one to try estimate the probability density in

a higher-dimensional space using a small ensemble, one would find that the model of probabil-

ity was very poor unless simplifying assumptions about the form of the distribution were made.

Even were this problem surmountable, the computational cost would be extravagant. In the prior

example the probability density was evaluated on a 100×100 grid. Suppose a similarly compli-

cated structure for the prior existed in 100 dimensions. Then if the joint probabilities were mon-

itored on a similar grid for each dimension, this would involve evaluating and modifying 100100
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density estimates. Such computations are already prohibitive for a 100-dimensional model state;

the problem becomes incomprehensible for model states of O(107).

Similarly, the Fokker-Planck equation is conceptually appealing but practically unusable for

large systems; The pdf cannot be forecast using (8) in high-dimensional systems due to compu-

tational constraints.

There is a handy statistical property that suggests a solution to the problem. This property

(e.g. Casella and Berger 1990, p. 45) states that when given a random variable such as xt
t, a

function of this such as E(xt
t) is also a random variable. This indicates that if we can generate

a random sample from P (xt
t | ψt) and if E can properly represent the deterministic and stochastic

effects in (7), we can generate a random sample of xt
t+1. This process is commonly known as en-

semble forecasting. The presumption is that if the initial uncertainty is randomly sampled, it is

possible to generate realistic random samples of forecast uncertainty. In section 4, we will return

to consider how to utilize the ensemble forecast data in the update process.

3. KALMAN FILTERS

An approximation to Bayesian state estimation is now considered under assumptions of lin-

earity of error growth and normality of error distributions. This approximate method is known

as the Kalman filter (Kalman 1960, Kalman and Bucy 1961, Jazwinski 1970, Gelb 1974, Ghil

1989, Cohn 1997, Talagrand 1997, Daley 1997). There are two components of the Kalman filter,

an update step, where the state estimate and an estimate of the forecast uncertainty are adjusted

to new observations, and a forecast step, where the updated state and the uncertainty estimate

are propagated forward to the time when the next set of observations become available. The

novel aspect of the Kalman filter compared to, say, operational methods such as three-dimensional

variational assimilation (3D-Var; Lorenc 1986, Parrish and Derber 1992) is that the error statis-

tics of the forecast are dynamically estimated, taking into account the tangent-linear growth of

errors and the uncertainty in the model itself.
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Kalman filters assume linearity and normality, for the assimilation problem becomes much

more tractable when these assumptions are made. Non-normality of the prior such as the bi-

modality in Fig. 1a is typically assumed to be uncommon in atmospheric data assimilation. Lin-

ear and normal assumptions may be inappropriate for atmospheric data assimilations of mois-

ture, cloud cover, and other aspects of the model state that may be very sensitive to motions at

small scales, where the time scale of predictability is small and errors grow and saturate rapidly.

a. Updating in the discrete Kalman filter

Start by making the following assumptions:

P (xt
t | ψt−1) ∼ N (xb

t ,P
b
t ) ∝ exp

[
−1

2
(xt

t − xb
t )TPb

t
−1

(xt
t − xb

t )

]
. (9)

That is, the probability density of the prior is distributed as a multivariate normal distribution

with known mean background xb
t and background-error covariance matrix Pb

t . Similarly, follow-

ing the discussion in section 2a, assume that the observation likelihood is distributed as a multi-

variate normal distribution with mean yt and covariance R:

P (yt | xt
t) ∼ N (yt,R) ∝ exp

[
−1

2

(
H(xt

t) − yt

)T
R−1

(
H(xt

t) − yt

)]
. (10)

Here, H is assumed to be a linear “forward” operator that converts the model state to the obser-

vation type and location. Applying (3),

P (xt
t | ψt) ∝ exp

[
−1

2

(
xt

t − xb
t

)T
Pb

t
−1(

xt
t − xb

t

)
− 1

2

(
H(xt

t) − yt

)T
R−1

(
H(xt

t) − yt

)]
. (11)

Maximizing (11) is equivalent to minimizing the negative natural log of (11), i.e., to minimizing

the functional J(xt
t) according to

J(xt
t) =

1
2

[(
xt

t − xb
t

)T
Pb

t
−1(

xt
t − xb

t

)
+
(
H(xt

t) − yt

)T
R−1

(
H(xt

t) − yt

)]
. (12)

This functional is a common starting point in the derivation of many assimilation schemes, from

the Kalman filter to 3D-Var. Let’s choose the value that minimizes this functional, providing a

maximum-likelihood estimate of the state which blends the new observations and the prior. This
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estimate will be called the “analysis,” or xa
t . xa

t can be found by the differentiating the functional

in (12) with respect to xt
t, setting the result equal to zero, and proceeding with some manipula-

tion. The resulting “update” equations are

xa
t = xb

t + K
(
yt − H(xb

t )
)
, (13)

where

K = Pb
t HT(HPb

t HT + R)−1. (14)

The optimal analysis state xa
t is estimated by correcting the background xb

t toward the “obser-

vation increment” yt − H(xb
t ), weighted by the Kalman-gain matrix K. In K, Pb

t HT represents

the covariances between the background state and the background state converted to observation

location and variable type; HPb
t HT represents the background-error covariance expressed at the

observation location expressed in the units of the observations. The effect of K is to apply the

observation increments to correct the background at relevant surrounding grid points. On aver-

age, the corrections are typically larger for grid points near to the observation location than for

grid points far from the observation location. Further, the larger HPb
t HT is compared to R, the

more the analysis is drawn to the observations.

Background-error statistics are explicitly updated in the Kalman filter. Given Pb
t , R, and the

observation locations (implied in H), the analysis-error covariance Pa
t is predicted. The equation

for the expected Pa
t is

Pa
t = (I − KH) Pb

t

= Pb
t − KHPb

t

= Pb
t − Pb

t HT(HPb
t HT + R)−1HPb

t .

(15)

The accuracy of the mean and covariance updates will depend on whether the underlying

assumption of normality is met and whether the error statistics have been estimated accurately.

Where do these statistics come from? Background-error covariances Pb
t are estimated by evolv-

ing analysis-error covariances forward to the time of the next assimilation cycle, discussed more

in section 3b. For atmospheric data assimilation, R is usually derived from extensive calibration
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and validation during field experiments. R is usually assumed to be a combination of random

instrument error and the error of representativeness, which can be thought of as the error in the

interpolation operator H (Lorenc 1986). Error statistics for R are commonly assumed to be in-

dependent of the flow (Daley 1991, 1993). That is, the same error statistics are used for different

observations of the same type, regardless of location, time, and weather conditions, an assump-

tion that may not always be justified.

b. Forecasting the state and error covariances in the discrete Kalman filter

The appeal of the Kalman filter relative to an analysis scheme like 3D-Var is that the influ-

ence of new observations (as expressed in the structure of the analysis increments xa
t −xb

t ) can be

quite complicated and flow- and time-dependent. These complicated structures result from the

model of background-error covariances developed by the Kalman filter. These error covariances

in turn reflect the structure of prior analysis-error covariances, the observation network, how the

flow-dependent linear error dynamics grows or shrinks these errors with time, and the effects of

model uncertainty.

Suppose the analysis xa
t and its error covariance Pa

t are known. An estimate will be needed

for the subsequent model state and background-error covariances at time t + 1. In the discrete

Kalman filter, suppose that the true model state evolves according to the linear equation

xt
t+1 = M(xt

t) + η. (16)

That is, the forecast evolution can be expressed as the sum of a linear operation on the current

model state M(xt
t) plus an unknown error η, also known as the “system noise.” M is an n × n

matrix, often called the transition matrix between times t and t + 1. Since the discrete Kalman

filter is described only to motivate use of the ensemble Kalman filter, η is assumed to have an

expected value of zero
〈
η
〉

= 0 and to be uncorrelated in time, with expected “model error” co-

variance Q :
〈
ηpη

T
q

〉
= Qδpq where δ is the Kronecker delta, and p and q denote two assimilation

times. Algorithmic details like the method of calculation of M will be skipped; these details are
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not crucial to the understanding of ensemble assimilation methods; for more details, see, for ex-

ample, Le Dimet and Talagrand (1986) and Lacarra and Talagrand (1988).

Given the linear model (16), the estimate of the evolution of the mean state (e.g., Talagrand

1997) is simply (16) without the noise term:

xb
t+1 = M(xa

t ). (17)

An estimate of the background-error covariances is also required at the next assimilation

time. Assuming that the system noise is uncorrelated with the tangent-linear dynamics,
〈

M(xa
t −

xt
t) η

T
〉

= 0, using (16) and (17) we get

Pb
t+1 =

〈
(xb

t+1 − xt
t+1) (xb

t+1 − xt
t+1)T

〉
=
〈(

M(xa
t ) − M(xt

t) − η
) (

M(xa
t ) − M(xt

t) − η
)T〉

=
〈(

M(xa
t − xt

t) − η
) (

M(xa
t − xt

t) − η
)T〉

= MPa
t MT + Q

= M (MPa
t )T + Q.

(18)

Given an operator M, this is how analysis-error covariances are evolved in the discrete Kalman

filter.

In practice, accurately determining even the time-averaged statistics of Q may be quite com-

plicated (Cohn and Parrish 1991, Daley 1992, Dee 1995, Blanchet et al. 1997). For both the

Kalman filter and ensemble-based methods, the accuracy of the assimilation is likely to strongly

depend on the assumed model for Q. Methods for estimating Q will be discussed for ensemble-

based methods in section 4d.

c. The extended Kalman filter

Before considering ensemble-based data assimilation methods, an extension to the discrete

Kalman filter called the extended Kalman filter (EKF) is considered (Jazwinski 1970, Gelb 1974,

Gauthier et al. 1992, Bouttier 1994). In the EKF, some of the assumptions of linearity are re-

laxed. First, suppose the assumption of linearity in (16) is a poor one; perhaps were one to use a
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fully nonlinear model operator M, i.e.,

xt
t+1 = M(xt

t) + η, (19)

then η would be much smaller. Accordingly, in the extended Kalman filter, one assumes that the

mean state will be evolved according to

xb
t+1 = M(xa

t ) (20)

instead of using (17). If differences xa
t − xt

t are small, then the evolution of these difference

should be approximately linear:

M(xa
t ) −M(xt

t) � M(xa
t − xt

t), (21)

where here M is the Jacobian matrix of M: M = ∂M
∂x .

The restriction that the forward operator H in (10) be linear is also relaxed, permitting a

possibly nonlinear H. Again, we presume that differences like xb
t − xt

t are small enough so that

the innovation vector yt −H(xb
t ) = H(xt

t) −H(xb
t ) + ε can be approximated with H(xt

t − xb
t ) + ε,

where now H = ∂H
∂x .

Given these relaxed assumptions, one can proceed to derive an alternate form of the Kalman

filter update equations. We will be content here to simply note the changes. In addition to as-

suming that the mean state is evolved nonlinearly in (20), the update equations is changed. (13)

is replaced by

xa
t = xb

t + K
(
yt −H(xb

t )
)
, (22)

where

K = Pb
t HT(HPb

t HT + R)−1. (23)

Covariance propagation is done as in (18).

d. Considerations in the use of Kalman filters

What approximations may limit the accuracy of the Kalman filter? First, as mentioned pre-

viously, error statistics must be carefully estimated; in particular, Q may be especially problem-
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atic. Second, error covariances are assumed to be normally distributed, so if they depart substan-

tially from normality, Kalman filters may not perform well. There is also the potential disadvan-

tage of the assumption of linearity of error growth. While errors for large-scale variables may

reasonably be assumed to grow linearly over a typical period between assimilation cycles of 3-6

h, some aspects, especially moist thermodynamic variables, may have errors which saturate on

this time scale. Similarly, if observations are not regularly available, error covariances estimated

with tangent-linear dynamics may grow rapidly without bound (Evensen 1992, Gauthier et al.

1993, Bouttier 1994).

Another potential disadvantage of the Kalman filters may be their computational expense.

Though Kalman filters provide a dramatic reduction in the computational cost relative to full

Bayesian data assimilation, for a highly dimensional state vector, the computational costs in

weather prediction models may still be extravagant. Consider the last line in (18). For an n-

dimensional model state vector, it will require 2n applications of M to forecast the error covari-

ances. Some reductions of computational expense may be possible. For example, there have

been suggestions that this computation may be more practical if the tangent-linear calculations

are performed in a subspace of the leading singular vectors (Fisher 1998, Farrell and Ioannou

2001).

Much more can be said about the Kalman filter, such as its equivalence to 4D-Var under

certain assumptions (Li and Navon 2001), the manner of computing M, iterated extensions of

the basic extended Kalman filter (Jazwinski 1970, Gelb 1974, Cohn 1997), and the properties

of its estimators (which, in the case of the discrete filter, if assumptions hold, provide the Best

Linear Unbiased Estimate, or BLUE; see Talagrand 1997). These Kalman filters, however, are

mentioned because they provide a context for understanding ensemble-based assimilation meth-

ods.

4. ENSEMBLE-BASED DATA ASSIMILATION
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The Kalman filter is computationally expensive, and the assumptions that errors evolve lin-

early and are normally distributed may hinder its applicability to high-dimensional geophysi-

cal systems. Ensemble-based assimilation algorithms may be able to provide a more accurate

analysis in situations where nonlinearity is strong and statistics exhibit some non-normality. If

these assimilation algorithms can work accurately with many fewer ensemble members than el-

ements in the state vector, then they will be computationally much less expensive as well. Con-

sequently, many researchers have proposed a variety of ensemble-based assimilation methods

that more perform more robustly when nonlinearity and non-normality may occur. Despite the

many differences between the various ensemble-based algorithms, all are comprised of a finite

number (perhaps 10 to a few hundred) parallel data assimilation and short-range forecast cycles.

Background-error covariances are modeled using the ensemble of forecasts, and an ensemble of

analyses are produced, followed by an ensemble of short-term forecasts to the next time obser-

vations are available. Ensemble-based assimilation algorithms also have the desirable property

that if error dynamics are indeed linear and the error statistics Gaussian, then as the ensemble

size increases, the state and covariance estimate from ensemble algorithms converge to those ob-

tained from the extended Kalman filter.

The concepts behind ensemble assimilation methods have been used in engineering and

aerospace applications as far back as the 1960’s (Potter 1964, Kaminski et al. 1971, Maybeck

1979). Leith (1983) outlined the basic idea for atmospheric data assimilation. The idea was more

completely described and tested in an oceanographic application by Evensen (1994) and in at-

mospheric data assimilation by Houtekamer and Mitchell (1998). Evensen (2003) provides a

general overview of these algorithms, and Lorenc (2003) hypothesizes on the relative benefits

and drawbacks relative to 4D-Var. Here, two classes of ensemble-based filters will be described,

stochastic and deterministic. Both classes propagate the ensemble of analyses with nonlinear

forecast models; the difference is whether or not random noise is applied during the update step.

a. Stochastic update algorithms
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The most well-known ensemble-based data assimilation algorithm is the ensemble Kalman

filter, or “EnKF” (Evensen 1994, Evensen and van Leeuwen 1996, Houtekamer and Mitchell

1998, 1999, 2001, Burgers et al. 1998, Hamill and Snyder 2000, 2002, Mitchell and Houtekamer

2000, Hamill et al. 2001, Keppenne and Rienecker 2002, Mitchell et al. 2002). This algorithm

updates each member to a different set of observations perturbed with random noise. Because

randomness is introduced every assimilation cycle, the update is considered stochastic.

For notational simplicity, the t time subscript used in previous sections is dropped; it is as-

sumed unless noted otherwise that we are interested in estimating the state pdf at time t. We

start off by assuming that we have an ensemble of forecasts that randomly sample the model

background errors at time t. Let’s denote this ensemble as Xb, a matrix whose columns are com-

prised of ensemble member’s state vectors:

Xb = (xb
1, . . . , x

b
m), (24)

The subscript now denotes the ensemble member. The ensemble mean xb is defined as

xb =
1
m

m∑
i=1

xb
i . (25)

The perturbation from the mean for the ith member is x′b
i = xb

i − xb. Define X′b as a matrix

formed from an ensemble of perturbations

X′b = (x′b
1 , . . . , x

′b
m) (26)

and let P̂b represent an estimate of Pb from a finite ensemble

P̂b =
1

m− 1
X′bX′bT

. (27)

The EnKF performs an ensemble of parallel data assimilation cycles, i = 1, . . . , m, with each

member updated to a somewhat different realization of the observations:

xa
i = xb

i + K̂
(

yi −H(xb
i )
)
. (28)
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H is the observation operator, which is permitted here to be a nonlinear operator. In (28), the

yi = y + y′
i are “perturbed observations,” defined such that y′

i ∼ N (0,R), and

1
m

m∑
i=1

y′
i = 0. (29)

The m sets of perturbed observations are thus created to update them different background fields.

Here, in (28), K̂ = P̂bHT(HP̂bHT + R)−1, similar to the extended Kalman filter gain in (23) but

permitting a possibly nonlinear H and estimating the background-error covariance from the en-

semble. This second difference may provide a powerful advantage over the extended Kalman

filter. Envision a situation where errors grow rapidly but saturate at low amplitude; the linear

assumption of error growth in the extended Kalman filter will result in an overestimate of back-

ground error variance, but the differences among ensemble members will not grow without bound

and thus should provide a more accurate model of the actual background-error statistics.

Why does the EnKF assimilate perturbed observations in (28) rather than unperturbed ob-

servations? Let X′a be a matrix of analysis ensemble member deviations from the analysis mean

state, as (26) defined background deviations, and let P̂a be formed from the ensemble of anal-

yses using (28). Then as the ensemble size approaches infinity and if the dynamics are linear,

P̂a = 1
m−1X′aX′aT → Pa, where Pa is the extended Kalman filter analysis-error covariance from

(15) (Burgers et al. 1998). If unperturbed observations are assimilated in (28) without other

modifications to the algorithm, the analysis-error covariance will be underestimated, and obser-

vations will not be properly weighted in subsequent assimilation cycles. Pham (2001) proposes

an alternative to perturbing the observations, adding noise to background forecasts in a manner

that also ensures analysis-error covariances are equal to those produced by the extended Kalman

filter.

For a complex numerical weather prediction model with a high-dimensional state vector,

explicitly forming P̂b as in (27) would be computationally prohibitive; for example, in a model

with 107 elements in its state, storing and readily accessing the 1014 elements of P̂b is not possi-

ble. However, in ensemble-based methods, K̂ can be formed without ever explicitly computing

21



the full P̂b. Instead, the components of P̂bHT and HP̂bHT of K̂ are computed separately. Define

H(xb) =
1
m

n∑
i=1

H(xb
i ),

which represents the mean of the estimate of the observation interpolated from the background

forecasts. Then

P̂bHT =
1

m− 1

m∑
i=1

(
xb

i − xb
)(

H(xb
i ) −H(xb)

)T
, (30)

and

HP̂bHT =
1

m− 1

m∑
i=1

(
H(xb

i ) −H(xb)
)(

H(xb
i ) −H(xb)

)T
. (31)

Of course, if the number of observations is as large as the elements in the model state, P̂bHT

and HP̂bHT will be as large as P̂b, negating this advantage. Section 6 will describe how the ar-

ray size can be limited through the serial processing of independent batches of observations.

b. Deterministic update algorithms.

There are ways to correct the background ensemble to new observations so that P̂a → Pa

without adding random noise. As discussed in Whitaker and Hamill (2002), adding noise to the

observations may have several deleterious consequences, such as introducing spurious observation-

background error correlations. Algorithms that do not add stochastic noise are called determin-

istic algorithms, so named because if the background ensemble and the associated error statistics

are known, the ensemble of analysis states will be completely known as well. Such algorithms

(e.g., Bishop et al. 2001, Anderson 2001, Whitaker and Hamill 2002) all attempt to adjust the

existing ensemble in a way that provides the correct posterior covariances without adding noise

to the observations or the background forecasts. Tippett et al. (2003) describes the similarities

and differences between these algorithms. In each algorithm, the background-error covariances

are never explicitly formed, with manipulations being performed on the matrix square root (i.e.,

eq (26), the matrix of ensemble member deviations from the mean). As pointed out in Tippett et

al., since P̂b = 1
m−1X′bX′bT

, given a matrix U representing an n × n orthogonal transformation

UUT = UTU = I, then P̂b can also be represented as P̂b = 1
m−1(X′bU)(X′bU)T. Hence, many

square-root filters can be formulated that produce the same posterior covariance model.
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A particularly simple implementation of a deterministic ensemble assimilation algorithm is

the “ensemble square-root filter,” or “EnSRF,” described by Whitaker and Hamill (2002). Like

the EnKF, the EnSRF conducts a set of parallel data assimilation cycles. It is convenient in the

EnSRF to update the equations for the ensemble mean (denoted by an overbar) and the deviation

of the ith member from the mean separately:

xa = xb + K̂
(

y −H(xb)
)
, (32)

x′a
i = x′b

i − K̃H(x′b
i ). (33)

Here, K̂ is the traditional Kalman gain as in Eq. (25), and K̃ is the “reduced” gain used to up-

date deviations from the ensemble mean.

If observations have independent errors, they can be assimilated simultaneously or serially

(sequentially), producing the same result (Gelb 1974, Bishop et al. 2001, and section 6a, below).

The analysis ensemble after the assimilation of the first observation is used as the background

ensemble for the assimilation of the second, and so on. When sequentially processing indepen-

dent observations, K̂, K̃, HP̂b and P̂bHT are all n-dimensional vectors, and HP̂bHT and R are

scalars. Thus, as first noted by Potter (1964), when observations are processed one at a time,

K̃ =

1 +

√
R

HP̂bHT + R

−1

K̂. (34)

The quantity multiplying K̂ in Eq. (34) thus becomes a scalar between 0 and 1. This means that,

in order to obtain the correct analysis-error covariance with unperturbed observations, a mod-

ified Kalman gain that is reduced in magnitude relative to the traditional Kalman gain is used

to update deviations from the ensemble mean. Consequently, deviations from the mean are re-

duced less in the analysis using K̃ than they would be using K̂. In the EnKF, the excess variance

reduction caused by using K̂ to update deviations from the mean is compensated for by the in-

troduction of noise to the observations.

In the EnSRF, the mean and departures from the mean are updated independently accord-

ing to Eqs. (32) and (33). If observations are processed one at a time, the EnSRF requires about

23



the same computation as the traditional EnKF with perturbed observations, but for moderately

sized ensembles and processes that are generally linear and Gaussian, the EnSRF produces anal-

yses with significantly less error (Whitaker and Hamill 2002). Conversely, Lawson and Hansen

(2003) suggest that if nonlinearity and non-normality are typical and ensemble size is large, the

EnKF will perform better.

Another deterministic update algorithm is the Ensemble Transform Kalman filter (ETKF) of

Bishop et al. (2001). The ETKF finds the transformation matrix T such that P̂a = 1
m−1 (X′bT) (X′bT)T →

Pa. (see Bishop et al. for details on the computation of T). Compared with the EnSRF, an ad-

vantage of the ETKF is its computational speed; a disadvantage is that the ETKF cannot apply

covariance localizations (section 5), which may make the analyses very inaccurate unless large

ensembles are used. The ETKF has been successfully demonstrated for generating perturbed

initial conditions for ensemble forecasts about a mean state updated using 3D-Var (Wang and

Bishop 2003), and hybrid ETKF-variational schemes are being explored (Etherton and Bishop

2003).

c. A simple demonstration of stochastic and deterministic update steps

Consider again the Bayesian data assimilation problem illustrated in Fig. 1. There, a bi-

modal 2-D probability distribution was updated to an observation of one component. Let’s ex-

plore the characteristics of the EnKF and EnSRF update applied to this problem.

A realistic 100-member random sample was first generated from the bimodal pdf in Fig. 2a.

These samples are denoted by the black dots in Fig. 2a. Let’s keep track of the assimilation for

one particular member, denoted by the larger black dot.

The EnKF and EnSRF adjust the background to the observations with weighting factors that

assume the distributions are normal. Estimated from this random sample, the background-error

covariance is

P̂b =

(
σ2(xb

(1)) Cov (xb
(1), x

b
(2))

Cov (xb
(1), x

b
(2)) σ2(xb

(2))

)
�
(

150.73 109.70
109.70 203.64

)
.
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The shape of this distribution is illustrated by the black contours in Fig. 2a. Here, the observa-

tion measures the same aspect as the first component of our state variable: H = [1, 0]. As in Fig.

1, assume R = 100, so HP̂bHT + R � 150.73 + 100.00 = 250.73. P̂bHT � [150.73, 109.70]T,

and hence K̂ = PbHT(HPbHT + R)−1 � [0.60, 0.44]T.

For the EnKF, perturbed observations were then generated, denoted by the short vertical

lines along the abscissa in Fig. 2a. Eq. (28) was then applied, updating background samples

to their associated perturbed observations, generating analysis samples. For example, the heavy

black dot in Fig. 2a was updated to the perturbed observation marked with the “*”. The result-

ing analysis sample is the large black dot in Fig. 2b. For the noted sample, the first component

of the background state was much less than the mean, and the perturbed observation was greater

than the mean background state. The resulting analysis nudged the posterior state toward the

mean in both components. Other dots in Fig. 2b denote other updated EnKF member states.

In the EnSRF, the ensemble background mean state ∼ [47.93, 50.07]T was updated to the

mean observed value 58.0 using K̂ computed above and eq. (32), resulting in a mean analyzed

state of ∼ [53.55, 54.16]. As with the EnKF, given the positive observation increment and the

positive correlation of the background-error covariances between the two components, both com-

ponents of the mean state were adjusted upward. EnSRF perturbations from the mean were up-

dated using eq (33) and the reduced gain, here K̃ � 0.613 K̂.

Compare the EnKF and EnSRF random samples of the posterior from Figs. 2b-c and their

fitted distribution (black contours) with the correct Bayesian posterior (red contours). The sam-

ples from both distributions do not appear to randomly sample the correct posterior. The EnKF

and EnSRF posterior distributions are shifted slightly toward lower values in both components.

The EnSRF posterior samples preserve the original shape from the prior, though their values

are shifted in mean and compressed together. In comparison, the EnKF samples are random-

ized somewhat through the assimilation of the perturbed observations, and in this case, its dis-

tribution is somewhat more diffuse than that of the EnSRF. The EnKF samples appear to overlap

more with the correct distribution than the samples from the EnSRF.
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Why can’t ensemble-based methods correctly adjust the prior ensemble to the new observa-

tions so that the samples reflect a random draw from the Bayesian posterior? The reason is that

ensemble-based methods implicitly assume a second-moment closure; that is, the distributions

are assumed to be fully described by means and covariances. The example shown above demon-

strates that some inaccuracies can be expected in these analyses if indeed there are higher-moment

details in these distributions. Lawson and Hansen (2003) show that the EnKF may be more ro-

bust than the EnSRF in such situations, while Whitaker and Hamill (2002) indicate that the En-

SRF may perform better in situations where normality is an appropriate assumption, as the ran-

dom noise introduced by perturbing the observations in the EnKF can have deleterious effects.

Hopefully, highly non-normal distributions are not frequently encountered, as radically more ex-

pensive techniques than those discussed here may then be required (e.g., Gordon et al. 1993).

d. Ensemble propagation of the pdf and model-error parameterization

Ensemble-based assimilation methods leverage a potential increase in accuracy that may re-

sult from estimating covariances from an ensemble propagated with the fully nonlinear forecast

model. If forecast-error dynamics are in fact quite nonlinear and saturate quickly, then the as-

sumption of linearity in the discrete and extended Kalman filters was inappropriate, and some

accuracy may be gained relative to the Kalman filters by estimating covariances from a sample

of fully nonlinear model forecasts.

However, in real-world applications, background-error covariances cannot simply be esti-

mated at the next assimilation cycle by conducting an ensemble of deterministic forecasts for-

ward from the current cycle’s analyses. Because of model deficiencies, even if the true state of

the atmosphere is perfectly known, the resulting forecast will be imperfect: xt
(t+1) = M(xt

(t)) + η,

where here we denote the time index in parentheses and M is again the nonlinear forecast oper-

ator. Let’s first assume that our forecast model is unbiased
〈
η
〉

= 0, again with model-error co-

variance
〈
ηηT

〉
= Q. In practice, The assumption of no bias is probably not justified, and if the

bias can be determined, the forecasts ought to be corrected for this bias (Dee and Todling 2000)

or more ideally, the forecast model ought to be improved. In any case, consider the error covari-
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ance at the next assimilation time. Assume again that forecast error due to initial-condition un-

certainty and model error are uncorrelated
〈(

M(xa
(t)) −M(xt

(t))
)
ηT
〉

= 0, and assume linearity

of the error growth M(xa
(t)) −M(xt

(t)) � M
(

xa
(t) − xt

(t)

)
. Then the true background-error covari-

ance at the next assimilation time is〈(
xb

(t+1) − xt
(t+1)

) (
xb

(t+1) − xt
(t+1)

)T〉
=
〈(

M(xa
(t)) −M(xt

(t)) − η
) (

M(xa
(t)) −M(xt

(t)) − η
)T〉

�
〈

M
(

xa
(t) − xt

(t)

)(
xa

(t) − xt
(t)

)T
MT

〉
+
〈
ηηT

〉
= MPa

(t)M
T + Q

(35)

where M is again the Jacobian of the nonlinear operator. Consider what happens when covari-

ances are estimated directly from an ensemble of forecasts propagated forward from an ensem-

ble of i = 1, . . . , m analyses using the fully nonlinear forecast model

xb
i(t+1) = M(xa

i(t)), (36)

Calculating the expected covariance, we get〈(
xb

i(t+1) − xb
(t+1)

) (
xb

i(t+1) − xb
(t+1)

)T〉
=
〈(

M(xa
i(t)) −M(xa

(t))
)(
M(xa

i(t)) −M(xa
(t))
)T〉

�
〈

M
(
xa

i(t) − xa
(t)

)(
xa

i(t) − xa
(t)

)T
MT

〉
� MP̂a

(t)M
T.

(37)

Comparing (35) and (37), it is apparent that an ensemble of analyses that are simply propagated

forward with the nonlinear forecast model will have too small an expected amount of spread,

missing the extra model-error covariance Q. Let us define some hypothetical set of background

forecasts at time t + 1 that do have the correct covariance, i.e., define x̆b
i(t+1) such that

〈(
x̆b

i(t+1) −
x̆b

(t+1)

) (
x̆b

i(t+1) − x̆b
(t+1)

)T〉
= MP̂a

(t)M
T + Q. Such an ensemble is possible if we add noise to

our existing ensemble:

x̆b
i(t+1) = xb

i(t+1) + ξi, (38)

where
〈
ξiξ

T
i

〉
= Q,

〈
ξi

〉
= 0, and

〈
xb

i(t+1) ξ
T
i

〉
= 0.

Several methods have been proposeed for incorporating noise into the ensemble of forecasts

so that they account for model error. First, the forecast model could be stochastic-dynamic in-
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stead of deterministic, with terms to the prognostic equations to represent interactions with un-

resolved scales and/or mis-parameterized effects; in essence, M is changed so that the ensemble

of forecasts integrates random noise in addition to the deterministic forecast dynamics, as in (7).

Over an assimilation cycle, this additional variance added to the ensemble as a result of integrat-

ing noise should be designed to increase the covariance by the missing Q. Another possibility is

that one may choose to run a forecast model without integrating noise but to add noise to each

member at the data assimilation time so as to increase the ensemble variance appropriate to the

missing Q. Third, it may be possible to use a multi-model ensemble to estimate covariances, or

to achieve satisfactory results by inflating the deviations of ensemble members about their mean.

Little work has yet been done on the first of these three approaches. Buizza et al. (1999)

demonstrated a simple technique for integrating noise to account for deterministic sub-gridscale

parameterizations. Under their methodology, the parameterized terms in the prognostic equa-

tions were multiplied by a random number. Penland (2003) outlines a more general approach for

integrating system noise in numerical models. To date, however, a comprehensive noise integra-

tion scheme has not yet been demonstrated in an operational weather prediction model. Palmer

(2001) discusses the potential appeal of such an approach.

The second general approach is to augment the ensemble-estimated model of covariances

during the update step with noise representing the missing model error covariances. Mitchell

and Houtekamer (2000) describe one such approach.

A third approach, use of multiple forecast models for generating the ensemble of background

forecasts (e.g., Houtekamer et al. 1996b, Harrison et al. 1999, Evans et al. 2000, Ziehmann

2000, Richardson 2000, Hou et al. 2001), is appealing for its simplicity. A wider range of fore-

casts is typically generated when different weather forecast models are used to forecast the evo-

lution of different ensemble members. Unfortunately, it is not clear whether or not the differ-

ences between members are actually representative of model errors; initial experimentation has

shown that the multi-model ensembles tend to produce unrealistic estimates of error covariances.

Forecast errors at larger scales ought to be mostly in balance, but when estimated from multi-
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model ensembles, preliminary results suggest that the errors can be greatly out of balance, with

detrimental effects on the subsequent assimilation (personal communication, M. Buehner). See

also Hansen (2002) for a discussion of discussion of the use of multi-model ensembles in data

assimilation in a simple model.

A last approach, discussed in Anderson and Anderson (1999) and demonstrated in Whitaker

and Hamill (2002) and Whitaker et al. (2003), is to enlarge background error estimates by in-

flating forecast ensemble member’s deviation about their mean by an amount r (slightly greater

than 1.0) before the first observation is assimilated:

xb
i ← r

(
xb

i − xb
)

+ xb. (39)

Here, the operation ← denotes a replacement of the previous value of xb
i . This technique is called

“covariance inflation.” Application of a moderate inflation factor has been found to improve the

accuracy of assimilations. Note that inflation effectively increases the spread of the ensemble,

but it does not change the subspace spanned by the ensemble. Hence, if model error projects

into a substantially different subspace, this parameterization may not be effective.

5. COVARIANCE LOCALIZATION

In ensemble assimilation methods, the accuracy of error statistics is especially important.

Unlike 3D-Var, the effects of a mis-specification of error statistics can affect the analysis-error

covariance, which is then propagated forward in time. Hence, if the analysis errors are under-

estimated in one cycle, the forecast errors may be underestimated in the following cycle, under-

weighting the new observations. The process can feed back on itself, the ensemble assimilation

method progressively ignoring observational data more and more in successive cycles, lead-

ing eventually to a useless ensemble. This is known as filter divergence (e.g., Houtekamer and

Mitchell 1998, van Leeuwen 1999, Hamill et al. 2001). For the ensemble-based methods, filter

divergence can be induced by many causes. One of the most crucial is to model background-

error covariance realistically. As discussed in the previous section, an adequate parameterization

of model error is likely to be very important. However, filter divergence can occur even in sim-
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ulations where the forecast model is perfect, for background-error covariances are typically es-

timated imperfectly from small ensembles. While more ensemble members would be desirable

to reduce the sampling error in estimating background-error covariances, more members means

more computational expense.

One common algorithmic modification to improve error covariance estimates from ensem-

bles is covariance localization. The covariance estimate from the ensemble is multiplied point

by point with a correlation function that is 1.0 at the observation location and decreases mono-

tonically with increasing distance. Why do this? Consider the example illustrated by Fig. 3.

Here there is a 100-dimensional state vector, perhaps representing, say, surface temperature around

a latitude circle. Suppose the true covariance is known, with a variance at each model grid point

of 1.0 and a standard deviation of 7.5 grid points. In this case, errors ∼ 20 grid points apart are

effectively uncorrelated (solid lines in Fig. 3a). When the covariance structure is estimated from

a 50-member ensemble constructed to randomly sample the true covariance matrix (Houtekamer

1993, eq. 13), variances are mis-estimated somewhat, and there are spurious covariances be-

tween distant grid points. For example, grid point 40 and grid point 90 co-vary, as indicated by

the dashed blue line. Hence, without some modification, an observation at grid point 40 will im-

properly change the analysis and reduce the posterior variance at grid point 90. After the appli-

cation of a localization function (Fig. 3b) with a correlation length of 15 grid points, the covari-

ance estimate much more closely resembles the true covariances.

Mathematically, to apply covariance localization, the Kalman gain K̂ = P̂bHT(HP̂bHT +

R)−1 is replaced by a modified gain

K̂ =
(
ρS ◦ P̂bHT

)(
H(ρS ◦ P̂b)HT + R

)−1
, (40)

where the operation ρS ◦ in (40) denotes a Schur product (an element-by-element multiplica-

tion) of a correlation matrix S with local support with the covariance model generated by the

ensemble. One such correlation matrix can be constructed using an approximately Gaussian-

shaped function described in Gaspari and Cohn (1999). Define a correlation length scale lc, and

let Fc =
√

10
3 lc. Define ‖Dij‖ to be the Euclidean distance between grid points i and j. Then a
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correlation matrix S is defined according to S(i, j) = Ω (Fc, ‖Dij‖). Let a = Fc and b = ‖Dij‖.

Then

Ω (a, b) =


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(
b
a

)5
+ 1

2

(
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3

(
b
a

)2
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1
12

(
b
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(
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(
b
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)3
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3

(
b
a

)2 − 5
(

b
a

)
+ 4 − 2

3

(
b
a

)−1
, a < b ≤ 2a;

0. b > 2a.

(41)

The Schur product of matrices A and B is a matrix C of the same dimension, where Cij = AijBij .

When covariance localization is applied to smaller ensembles, it can actually result in more ac-

curate analyses than would be obtained from larger ensembles without localization (e.g., Houtekamer

and Mitchell 2001). Mathematically, localization increases the effective rank of the background-

error covariances (Hamill et al. 2001). In the extreme, if the correlation matrix S were the iden-

tity matrix, the covariance model would consist of grid points with variances and zero covari-

ance and the rank of the covariance matrix after localization would increase from m − 1 to n,

the dimension of the state vector. In practice, such an extreme localization would harm the qual-

ity of the analysis, destroying the mass-wind balance (Mitchell and Houtekamer 2002, Lorenc

2003) and prohibiting the observation from changing the analysis at nearby grid points. Hence,

broader localizations are typically used. Generally, the larger the ensemble, the broader the opti-

mum correlation length scale of the localization function (Houtekamer and Mitchell 2001, Hamill

et al (2001)).

In applying the covariance localization, the covariances between distant grid points are ef-

fectively de-coupled. Should they be? Consider a simple two-member ensemble; dynamically,

there is no reason to expect that the growth of differences over Japan is dynamically intercon-

nected to the growth of differences over Africa, and neither interconnected with the growth of

differences over South America. This two-member ensemble “sees” more than two growing

regions but assumes they are all coupled. Covariance localization is thus a heuristic attempt to

modify the model of background-error covariances so that a limited-size ensemble will not rep-

resent distant, distinct features as dynamically interrelated when in fact they generally are not.

If indeed distant regions are in fact dynamically coupled, the localization will cause the loss of

this information. The effect on the data assimilation will be that observations will not be able to
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change the analysis and reduce the analysis-error variance in distant regions; local observations

will have to be relied upon instead. This is judged to be less detrimental than the opposite, to let

observations affect distant regions when this is inappropriate. It is especially important to guard

against underestimating background-error covariances with ensembles, since this can induce fil-

ter divergence. Hence, the conservative use of the observations implied by localization is often

helpful.

Covariance localization will be illustrated in a real-data example in section 7. For more

background and experimentation, see Houtekamer and Mitchell (2001) and Hamill et al. (2001).

6. MAKING ENSEMBLE ASSIMILATION METHODS COMPUTATIONALLY

FEASIBLE

Though ensemble-based assimilation is computationally less expensive than the Kalman

filter, it is still a much more expensive calculation than 3D-Var and it is probably roughly the

same order of magnitude as 4D-Var. The computational expense of most ensemble-based meth-

ods will scale with the number of observations times the number of ensemble members times the

dimension of the state vector. Practically, though, the relative expense may be more determined

by factors such as the convergence rate of 4D-Var, the extent of parallelization of ensemble ap-

proaches, and the complexity of the operator H.

How can the computational time of these ensemble assimilation methods be lessened? One

shortcut was already mentioned, avoiding the formulation of P̂b directly and calculating the gain

components directly from the ensemble. (eqs. 30 and 31). We now consider three other meth-

ods for simplifying the calculations, serial (sequential) processing of observations and parallel-

processing methods, and variational formulation.

a. Serial processing of observations

Gelb (1974) demonstrated in the Kalman filter that a batch of independent observations can

be assimilated either simultaneously or sequentially (serially). Starting with a background fore-

cast and background error-covariances, a single observation may be assimilated. The analysis
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state and analysis-error covariance resulting from the assimilation of the first observation may

be used as the background and background-error covariance in the assimilation of the second in-

dependent observation. Regardless of whether the observation are assimilated simultaneously or

serially, the same expected analysis and analysis-error covariance will result. Consequently, the

order in which observations are serially assimilated is unimportant.

Serial processing of observations may be desirable in ensemble-based methods, for both the

coding and the computations are rendered somewhat less demanding. Most of the ensemble-

based algorithms described in the literature serially assimilate observations. When observations

are assimilated serially, for each observation that is assimilated, HP̂bHT and R become scalars.

Thus, the inverse (HP̂bHT + R)−1 in the gain matrix is trivial to compute. Also, the application

of the covariance localization in (40) is much more straightforward to apply.

The equivalence of serial and simultaneous processing is only true if observations have in-

dependent errors (Kaminsky et al. 1971). Practically, however, many observations may have

vertically or horizontally correlated errors. Consider two alternatives to deal with this. First, if

the size of a batch of observations with correlated errors is relatively small, these batches can

be processed simultanteously without much more computational expense; the matrix inverse of

(HP̂bHT + R)−1 should not be prohibitively expensive. Another option is to transform the ob-

servations and the forward operator so that the observations are effectively independent. The

method for doing this is derived in the Appendix.

b. Parallel processing

Many modern computers today are “massively parallel,” consisting of individual central

processing units (CPUs) with their own memory. Such computers often have relatively fast com-

putational speed on each CPU, but the overall speed of a calculation can be slowed significantly

when new data must be continually exchanged between CPUs. Hence, to speed up the process-

ing speed of ensemble data assimilation on such computers, the parallelization ought to be de-

signed so a minimum of data need be exchanged among the CPUs.
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There are two general components to the ensemble data assimilation; first, for an m-member

ensemble-based method, m parallel data assimilation cycles will need to be computed, and sec-

ond, from the m resulting analyses, m forecasts forward to the next assimilation time. The fore-

cast component is easily parallelizable. Each member of the ensemble can be forecast in parallel

on a separate CPU(s), since no information need be swapped between CPUs during the forecast

step. However, parallelizing the data assimilation component is considerably more difficult. The

update of each member background forecast to the new observations requires information from

all the other ensemble members in formulating the gain matrix K̂. It would be highly inefficient

to simply parallelize so that different members were updated on different processors, since each

processor would be duplicating the same computationally expensive gain calculation. How, then,

might we speed up the computation of parallel analyses?

One reasonably simple thing to do is to parallelize over widely separated observations or

batches of observations. Envision two observations on opposite sides of the world. With covari-

ance localization, each observation corrects the background at a mutually exclusive set of grid

points. In this case, regardless of whether the two observations are processed serially or simul-

taneously in parallel, the same analyses will result. This is one simple example of how the com-

putations in the EnKF may be parallelized. Houtekamer and Mitchell (2001) discuss the design

and testing of a parallel ensemble Kalman filter exploiting this algorithm.

How else might the work of the ensemble filter be split up among several CPUs? Typically,

one of the most computationally expensive steps during the EnKF is the calculation of the K̂,

and in particular, the computation of the term P̂bHT. If this could be parallelized, it could result

in dramatic cost savings. Following (26), when observations are processed serially, this term is

computed from a product of the n×m matrix of ensemble perturbations and the m-dimensional

vector of observation operators applied to the ensemble perturbations. Consider, now, that the n-

dimensional state vector is split up over a number of processors. Perhaps the ensemble of north-

ern hemisphere grid points are processed on CPU 1, the southern hemisphere on CPU 2. Say we

are to process two observations serially, one just north of the equator and one south of it. For
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the first observation, the ensemble of
(
H(xb

i ) −H(xb)
)T

from (26) could be computed on CPU

1 and then transferred to processor 2. CPU 1 would then calculate P̂bHT for the northern hemi-

sphere, CPU 2 for the southern hemisphere. Following that, the update (25) would similarly be

split amongst the two CPUs. When the second observation in the southern hemisphere is ready

to be processed, the ensemble of
(
H(xb

i ) −H(xb)
)T

can be computed on CPU 2 and that data

shipped back to CPU 1. The computationally expensive part of the gain calculation and the up-

date are then again computed in parallel. This general method of parallelization could be split

up over any arbitrarily large number of CPUs. As long as the operator H is relatively simple,

then the step of computing the H(xb
i ) should proceed relatively quickly on one processor (not

leaving the other processors idle for long), and the amount of data shipped between processors

should be minimal. This technique was demonstrated successfully in Whitaker et al. (2003).

See also Keppenne and Rienecker (2002) for another example of parallelization.

c. Variational formulation

The computational expense of most ensemble-based algorithms scales linearly with the num-

ber of observations. This may be a large disadvantage if the observations are plentiful, as is to

be expected as more and more satellite-based observations are assimilated. The cost of varia-

tional methods like 3D-Var (Parrish and Derber 1992) do not scale linearly with the number of

observations; practically, doubling the number of observations may increase the costs 10 to 20

% (personal communication, J. Derber). Hence, if the ensemble data assimilation method can be

cast in the variational framework, this may provide a computational advantage. This is possible.

Starting with the functional in (12), an alternate solution method to (13) is

(
I + P̂bHTR−1H

) (
xa

t − xb
t

)
= P̂bHTR−1

(
yt − H(xb

t )
)

(42)

An ensemble-based assimilation method using this formulation was demonstrated in Hamill and

Snyder (2000). Though this approach may prove to be less computationally expensive, there are

some disadvantages. The adjoint operator of the observation operator will need to be coded, and

the technique is iterative in nature, so an effective minimization method and preconditioning
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may be needed as well. Covariance localization using this method will be more difficult to im-

plement, since observations are assimilated simultaneously, not serially. Recursive filter methods

such as those described in Wu et al. (2002) may be useful for implementing the localization.

7. DEMONSTRATION OF ENSEMBLE-BASED DATA ASSIMILATION

The EnSRF ensemble-based data assimilation methodology discussed in section 4b is now

demonstrated in a T62 spectral model. A more in-depth examination of these results is presented

in Whitaker et al. (2003), hereafter W03. The purpose of this assimilation experiment was to

demonstrate the feasibility of acceptable-quality reanalyses in the decades before radiosonde

data was available. Hence, the EnSRF was used to assimilate a network of sparse surface-pressure

observations, and the results were compared to 3D-Var. A brief description of the experimental

setup is provided here; for more details, see W03.

a. Forecast model

The forecast model was a recent version of the NCEP global medium-range forecast model

(MRF), used until 1998. The model was spectral with triangular trunction at wavenumber 62,

and it had 28 vertical levels. The model used a sigma (σ) vertical coordinate (Haltiner and Williams

1980). More documentation on this version of the MRF can be found in Wu et al. (1997).

b. Observations

Observations of surface pressure from 2001 were subsampled to resemble the observational

surface network of 1915. Observations were assimilated every 6 h, with the bulk of the obser-

vations at 0000 UTC and 1200 UTC. A typical 0000 UTC data set had 204 surface pressure ob-

servations north of 20o N. latitude (Figure 5). At 0600 and 1800 UTC the density of marine ob-

servations was nearly the same, but there are no observations over land. Adjustments were made

to the surface-pressure observation when model orography and actual station height differed by

less than 1000 m, while stations with station height differences greater than 1000 m were dis-

carded. See W03 for details.
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Observation error standard deviations were the same as those used in the NCEP-NCAR re-

analysis, 1.6 hPa for ship observations and 1.0 hPa for land stations. Observation errors were

assumed to be independent. Observation errors were inflated proportional to the difference be-

tween the model orography and actual station elevation.

c. Assimilation methodology

The EnSRF of Whitaker and Hamill (2002) was used as the ensemble-based assimilation

methodology. Surface pressure observations were assimilated serially. A horizontal covariance

localization of the form in eq. (41) was applied with a correlation length lc = 2738 km (i.e., grid

points farther than 5000 km from the observation are forced to have zero covariance). A vertical

covariance localization was also applied. Ensemble-based covariances were directly used below

σ = 0.20, not used at all above σ = 0.05, and linearly interpolated in between.

As a crude parameterization of model error, at the beginning of each assimilation cycle, co-

variances were inflated. Because fewer observations were available in the Southern Hemisphere,

the background-error covariances estimated from the ensemble were generally larger. Successive

application of a large inflation factor cycle after cycle was thus not warranted, or the ensemble

variance would eventually exceed the climatological error variance. Accordingly, the inflation

factor r in (39) was set to 1.07 in the Northern Hemisphere and 1.007 in the Southern Hemi-

sphere, with a smooth transition between the two across the equator.

For comparison, a 3D-Var analysis was also computed using just the surface pressure ob-

servations. This is the same analysis method used in the NCEP-NCAR “CDAS” (Climate Data

Assimilation System) reanalysis, with the following exceptions. First, it was found that better

results were obtained with the divergence tendency constraint turned off. Second, because fore-

cast errors are larger with the assimilation of many fewer observations, the standard background-

error covariance model was multiplied by a factor of 16, ensuring a closer fit to the available

observations. Otherwise, the background-error covariance model was unchanged. It is possible

that these static, homogeneous background-error covariances could be tuned further to the sparse

observation network, somewhat improving the accuracy of CDAS analyses.
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d. Initial conditions and evaluation method

The EnSRF was initialized with an ensemble of random initial conditions drawn from the

November NCEP-NCAR reanalysis. The SSI was also initialized with a random reanalysis ini-

tial condition. So that the results do not reflect the random choice of initial conditions, the model

is allowed to spin up for two weeks starting on 15 November 2001. Unless otherwise noted, the

EnSRF results reflect the use of a 100-member ensemble.

All evaluations were done by comparing the analyses against NCEP-NCAR reanalyses,

which used several orders of magnitude more observations. Results were evaluated during Dec

2001 at grid points north of 20o N latitude.

e. Results

Figure 4 presents a snapshot of a 500 hPa analysis from the EnSRF as well as from the ver-

ifying NCEP-NCAR reanalysis. As shown, the position of long waves and short waves were

generally well analyzed, especially in regions with ample observations and downstream of these

regions. Short waves in the more data-sparse polar regions and in Siberia were not as well ana-

lyzed.

Figure 5 presents a time series of analysis errors from the EnSRF and the CDAS 3D-Var

analysis system. The EnSRF was uniformly better than the CDAS, with an average RMS error

almost half as small. The error of an EnSRF analysis at 500 hPa was generally about the same

magnitude as current 2.5-day forecast errors (W03). Also note in Figure 5 that the spread in the

EnSRF was tuned so that on average it is comparable in size to the EnSRF ensemble mean error,

as theory suggests it should.

Assimilation experiments were run with ensembles from sizes of 25 to 200 (not shown; see

W03). Generally, there was little improvement from the use of ensembles larger than 100 mem-

bers. The larger ensembles are useful for illustrating the necessity of covariance localization,

however. Following Houtekamer and Mitchell (1998), Figure 6 provides a map of sea-level pres-

sure correlations at grid points around the Northern Hemisphere with a grid point in the western
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Pacific Ocean on 0000 UTC 14 December 2001. When directly estimated using the 25-member

ensemble, correlations for grid points in the region around the observation are positive. The

shape of the correlation function was anisotropic, with positive correlations generally limited

to a region east of the axis of the cyclone. Background errors for regions in the eastern Pacific

and near the Greenwich meridian also appeared to be highly correlated with background errors

at the observation location. However, when the correlations are estimated from a 200-member

ensemble, it’s apparent that these distant correlations in the 25-member ensemble were caused

by the limited sample size. The errors in the eastern Pacific and along the Greenwich meridian

were not dynamically interconnected with the errors in the western Pacific. When the covariance

localization function (Fig. 6c) was applied to the 25-member ensemble, the correlation model

(Fig. 6d) more closely resembles that from the larger ensemble.

The EnSRF achieves its improved accuracy over the 3D-Var system in CDAS through the

use of flow-dependent background-error covariance statistics. Figure 7 illustrates a snapshot

of these covariances in the regions surrounding 5 different observation locations. As shown,

the shape of the covariances differed from one observation location to the next, as well as the

magnitude of the covariances. For example, the background errors in the region over Siberia

and the adjacent Arctic ocean were apparently quite large, yet relatively small over the Atlantic,

where ship observations were plentiful. Background-error covariances also had detailed verti-

cal structure. Figure 8 provides cross-covariances between sea-level pressure and geopotential at

two levels, 1000 and 500 hPa, for two different surface observation locations. Positive covari-

ances at both locations tilted westward with height. For the observation southwest of the cy-

clone, the covariances became larger with height, indicating that the surface observation would

make a larger correction to the geopotential height at 500 hPa than at 1000 hPa. Conversely, for

the observation to the east of the cyclone, the covariances were similar in magnitude. Note that

the covariances for the second observation location were much larger, consistent with this lo-

cation being further from the relatively data-dense land areas, where forecasts were more accu-

rate. Also note that the covariances with observation east of low suggest that the position of the
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downstream trough should have been adjusted as well. These covariances were far more compli-

cated in structure than the covariance models used in operational 3D-Var schemes, which typi-

cally produce are barotropic, isotropic, and relatively homogeneous. The flow-dependent covari-

ances provide the improvement noted over the simpler 3D-Var.

8. WHERE NEXT?

The field of ensemble-based atmospheric data assimilation is a very new one. To this date,

because of the computational expense and the need for a basic understanding of these approaches,

most of the experimentation with ensemble assimilation methods have been done in simple mod-

els, often using assumptions that are unrealistic for practical numerical weather prediction (for

example, the assumption of a perfect model). The results with these simple experiments have

been uniformly impressive, indicating that testing in more realistic scenarios is warranted. That

is the state of the field in 2003. Several groups, most notably researchers with Environment Canada

and in the U.S. National Oceanic and Atmospheric Administration (NOAA), are testing the method-

ology with real observational data and comparing results against current operational methods.

There still is much to learn about ensemble-based data assimilation methodologies. Parame-

terizations of model error are just beginning to be explored. The effects of mis-specifying other

errors (such as the representativeness errors of observations) on ensemble assimilations is not

well understood. The extent to which the underlying assumptions of these filters are met (such

as Gaussianity) are not well known. Many practical problems such as ensuring balanced initial

conditions may need to be addressed. Further ways to minimize computational expense should

be explored. And finally, head-to-head comparisons against 4D-Var in a scenario of identical

computing resources should be performed; right now the appeal of ensemble-based methods is

more theoretical than evidence-based.

Despite the questions, the potential upside of ensemble assimilation methodologies is large.

Ensemble methods are much easier to code and maintain. Ensemble methods cycle the infor-

mation on background-error covariances, potentially providing a more accurate blending of ob-
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servations with the background. Unlike 4D-Var and Kalman filter methods, linearity of error

growth is not assumed, and if model error can be parameterized effectively, its effect on the data

assimilation can be rationally incorporated.

Because of the potential benefits and the promise of improved objective analyses, expect the

literature on ensemble-based data assimilation to grow rapidly in the coming years.
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10. APPENDIX: SERIAL PROCESSING OF NON-INDEPENDENT OBSERVATIONS IN

THE ENSEMBLE-BASED ASSIMILATION

As previously outlined, if observations have independent errors, then they can be processed

serially, which may be of computational advantage. If the observations are not independent, the

EnKF update equation (19) can be transformed so that serial processing of observations can oc-

cur.

Recall that yt = H(xt
t) + ε, where ε ∼ N (0,R), where R is no longer assumed to be di-

agonal. However, R is symmetric and positive definite, so it has a decomposition of the form

R = QRΛRQT
R, where QR is a unitary matrix with properties that QRQT

R = I and QT
R = Q−1

R (here

QR does not denote model error). ΛR is a diagonal matrix of associated eigenvalues.

Let’s denote a pseudo-observation ỹ = QT
Ry, or alternately, y = QRỹ. Then ỹ = QT

RH(xt
t) +

QT
Rε. Hence 〈

QT
Rε (QT

Rε)
T
〉

= QT
R

〈
εεT
〉

QR = ΛR. (A20)

Define H̃ = QT
RH, or equivalently H = QRH̃. Substituting this definition of H and y into the

EnKF update equation (25), we get

xa
i = xb

i + P̂bHT(HP̂bHT + R)−1
(

yi −H(xb
i )
)

= xb
i + P̂b(QRH̃)

T
(QRH̃PbH̃TQT

R + QRΛRQT
R)−1

(
QRỹi − QRH̃(xb

i )
)

= xb
i + P̂bH̃TQT

RQR(H̃P̂bH̃T + ΛR)−1QT
RQR

(
ỹi − H̃(xb

i )
)

= xb
i + P̂bH̃T(H̃P̂bH̃T + ΛR)−1

(
ỹ − H̃(xb

i )
)
.

(A21)

Thus, given a batch of observations with correlated errors and known observation-error covari-

ance matrix R for these observations, one determines the eigenvectors QR and eigenvalues ΛR of

R, forms the transformed perturbed observations ỹ and operator H̃ and then solves the last line

of (A21) can be used to serially process observations. See Kaminsky et al. (1971) for an essen-

tially equivalent algorithm using a Cholesky decomposition.
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FIGURE CAPTIONS

Figure 1. Example of Bayesian data assimilation update. Here the model state is two dimen-

sional and a single observation is assimilated. This observation measures the same variable

as the first component of the model state. (a) Probability density for prior joint and marginal

distributions (solid) and sample observation distribution (dashed). The three contours en-

close 75 %, 50 %, and 25 % of the probability density, respectively. (b) Probability density

for posterior distributions. Contours levels set as in (a).

Figure 2. Illustration of the EnKF and EnSRF with a two-dimensional state variable and ob-

servations observing the same as xb
(1). (a) Random samples (black dots) from the probabil-

ity distribution in (1), and the original prior pdf, contoured in red. Implied bivariate normal

probability background distribution estimated from the sample ensemble contoured in black,

and the observation sampling distribution (dashed). Solid vertical lines along abscissa de-

note individual perturbed observations sampled from this distribution. The one large black

dot and the perturbed observation marked with a star denote the sample discussed in the

text. (b) Analyzed samples from the EnKF assimilation scheme (dots), the implied analysis-

error bivariate normal distribution from this sample (solid black contours), and the true pos-

terior pdf from Fig. 1 (red). (c) Analyzed samples from EnSRF (dots), implied bivariate

normal pdf (solid black contours) and the true posterior pdf (red). In each panel, the three

contours enclose 75 %, 50 %, and 25 % of the probability density, respectively.

Figure 3. Illustration of covariance localization in domain with 100-dimensional state vector.

(a) True covariances model for grid points 1, 21, 41, 61, and 81 (solid lines). Estimate of

covariances from 50-member ensemble (dashed). (b) As in (a), but after application of co-

variance localization with correlation function with correlation length of 15 grid points.

Figure 4. 500 hPa geopotential height analysis for 0000 UTC 14 Dec 2001 (contour interval 50

m). CDAS analysis, using all available observations is shown on the left. EnSRF analysis
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using simulated 1915 surface pressure observation network is shown on right. Black dots

indicate locations of surface pressure observations used in the EnSRF analysis at this time.

Figure 5. Time series of RMS analysis errors from EnSRF (black line) and CDAS (red line) and

EnSRF spread (green line). (a) Errors of mean sea-level pressure (hPa), (b) errors of 500

hPa height.

Figure 6. Illustration of covariance localization. (a) Correlations of sea-level pressure directly

estimated from 25-member ensemble with pressure at a point in the western Pacific (colors).

Solid lines denote ensemble mean background sea-level pressure contoured every 8 hPa. (b)

As in (a), but using 200-member ensemble. (c) Localization function, (d) Correlation esti-

mate from 25-member ensemble after application of covariance localization.

Figure 7. Background-error covariances (colors) of sea-level pressure in the vicinity of five se-

lected observation locations, denoted by dots. Covariance magnitudes are normalized by

the largest covariance magnitude on the plot. Solid lines denote ensemble mean background

sea-level pressure contoured every 8 hPa.

Figure 8. Cross-covariances of mean sea-level pressure and geopotential height for two selected

pressure observation locations. (a) 1000 hPa geopotential height (units of m) and cross-

covariance of sea-level pressure (location marked with dot) with 1000 hPa height (units hPa×m).

(b) As in (a), but for 500 hPa height. (c) As in (a), but for the second observation location.

(d) As in (b), but for the second observation location.
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Figure 1. Example of Bayesian data assimilation update. Here the model state is two dimen-

sional and a single observation is assimilated. This observation measures the same variable

as the first component of the model state. (a) Probability density for prior joint and marginal

distributions (solid) and sample observation distribution (dashed). The three contours en-

close 75 %, 50 %, and 25 % of the probability density, respectively. (b) Probability density

for posterior distributions. Contours levels set as in (a).
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Figure 2. Illustration of the EnKF and EnSRF with a two-dimensional state variable and observations observing the same

as xb
(1). (a) Random samples (black dots) from the probability distribution in (1), and the original prior pdf, contoured

in red. Implied bivariate normal probability background distribution estimated from the sample ensemble contoured

in black, and the observation sampling distribution (dashed). Solid vertical lines along abscissa denote individual per-

turbed observations sampled from this distribution. The one large black dot and the perturbed observation marked with

a star denote the sample discussed in the text. (b) Analyzed samples from the EnKF assimilation scheme (dots), the

implied analysis-error bivariate normal distribution from this sample (solid black contours), and the true posterior pdf

from Fig. 1 (red). (c) Analyzed samples from EnSRF (dots), implied bivariate normal pdf (solid black contours) and

the true posterior pdf (red). In each panel, the three contours enclose 75 %, 50 %, and 25 % of the probability den-

sity, respectively.
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Figure 3. Illustration of covariance localization in domain with 100-dimensional state vector.

(a) True covariances model for grid points 1, 21, 41, 61, and 81 (solid lines). Estimate of

covariances from 50-member ensemble (dashed). (b) As in (a), but after application of co-

variance localization with correlation function with correlation length of 15 grid points.
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Figure 4. 500 hPa geopotential height analysis for 0000 UTC 14 Dec 2001 (contour interval 50

m). CDAS analysis, using all available observations is shown on the left. EnSRF analysis

using simulated 1915 surface pressure observation network is shown on right. Black dots

indicate locations of surface pressure observations used in the EnSRF analysis at this time.
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Figure 5. Time series of RMS analysis errors from EnSRF (black line) and CDAS (red line) and

EnSRF spread (green line). (a) Errors of mean sea-level pressure (hPa), (b) errors of 500

hPa height.
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Figure 6. Illustration of covariance localization. (a) Correlations of sea-level pressure directly estimated from 25-member

ensemble with pressure at a point in the western Pacific (colors). Solid lines denote ensemble mean background sea-

level pressure contoured every 8 hPa. (b) As in (a), but using 200-member ensemble. (c) Localization function, (d)

Correlation estimate from 25-member ensemble after application of covariance localization.
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Figure 7. Background-error covariances (colors) of sea-level pressure in the vicinity of five se-

lected observation locations, denoted by dots. Covariance magnitudes are normalized by

the largest covariance magnitude on the plot. Solid lines denote ensemble mean background

sea-level pressure contoured every 8 hPa.
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Figure 8. Cross-covariances of mean sea-level pressure and geopotential height for two selected

pressure observation locations. (a) 1000 hPa geopotential height (units of m) and cross-

covariance of sea-level pressure (location marked with dot) with 1000 hPa height (units hPa×m).

(b) As in (a), but for 500 hPa height. (c) As in (a), but for the second observation location.

(d) As in (b), but for the second observation location.
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